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ABSTRACT: 

 
In this simulation study reflectance spectra of soil samples have been measured in the lab in the 
wavelength range 380 - 2,500 nm and resampled to HyMap spectral resolution (128 spectral bands). 
Reflectance values have been converted into top of atmosphere radiance considering different 
atmospheric conditions and sun elevations. Sensor-specific noise depending on a given Noise 
Equivalent ∆ Radiance (NE∆R) was randomly simulated and added to the radiances. The resulting 
‘noisy’ radiance spectra have been recalculated into reflectance spectra at surface assuming identical 
radiometric conditions. 
Soil chemical properties from reflectance spectra were estimated using partial-least-square 
regression. Predictions accuracy of inorganic carbon concentrations were used to investigate the 
influence of radiometric disturbances as well as randomly distributed noise and spectral resolution. 
Cross-validated regression coefficient and root mean square error were used to compare results. 
Results indicated that prediction accuracy of inorganic carbon depends on sensor-specific and 
radiometric parameters. The main influence was attributed to the Noise Equivalent ∆ Radiance of 
the simulated sensor whereas a higher NE∆R to a limited extent could be compensated by the 
number of spectral bands used for prediction. In case of atmospheric influences it turned out that 
lower sun elevations reduced prediction accuracy and water vapour showed substantial influence on 
prediction accuracy. 
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1. INTRODUCTION 

 
Hyperspectral remotely sensed data are more 
and more frequently used for quantitative 
assessment of chemical or physical properties 
under varying climatic conditions in fields like 
precision agriculture or land degradation (e.g., 
Ben-Dor et al., 2002; Shrestha et al. 2005, 
Seelige et al., 2006; Jarmer et al., 2007) 

However, the full potential of remote sensing 
for such applications has yet to be fully 
realized. To exploit minor differences in soil 
properties from hyperspectral signals, the 
quality of imaging spectrometer data plays an 
important role. Noise level in hyperspectral 
data is high as their narrow bandwidth can 
only capture very little energy which may be 
overcome by the self-generated noise inside 



 

the sensors (Vaiphasa, 2006). Additionally, 
physical disturbances such as varying 
atmospheric or illumination conditions may 
make the situation worse as the disturbances 
decrease the precision of spectral signals 
recorded by the sensor. 
Smoothing techniques are commonly used for 
noise removal from hyperspectral data. 
However, smoothing should be carefully 
applied to preserve original data properties and 
alternatively investigation on how much noise 
is acceptable to guarantee precision of results 
on original data without smoothing is required. 
Du et al. (2008) have investigated the impacts 
of noise on the accuracy of hyperspectral 
image classification by support vector machine 
while Gong and Zhang (1999) analysed the 
effect of noise on linear spectral unmixing. 
Aiazzi et al. (2006) modelled and estimated 
noise from hyperspectral data. 
The aim of this study was to investigate the 
influence of different noise levels on the 
prediction accuracy of soil properties using 
hyperspectral data. Additionally, the impact of 
atmospheric conditions and sun elevations 
were simulated and studied. The influence of 
radiometric disturbances and normal 
distributed artificial noise on the prediction 
accuracy was analysed for inorganic carbon 
which is an important parameter in the 
assessment of soil development and soil 
condition of carbonatic soils. 
 
 

2. DATA AND METHODS 

 
The study site is located near Trier in the Eifel 
region (Rhineland-Palatinate, SW-Germany). 
For the investigation, a plot (“Dietrichskreuz”, 
Helenenberg) with a size of approximately 
14 hectares was selected. The soil type of this 
plot was an eutric cambisol derived from 
airblown silt over limestone. At dry weather 
conditions in August 1999 114 topsoil samples 
were taken using a sampling raster of 60x60 m 
to cover the spatial variability of soil 
properties. 
Soil samples were air-dried in the laboratory, 
gently crushed in order to pass a 2 mm-sieve 

and carefully homogenised. The total amount 
of carbon in the soil samples was analysed by 
dry combustion at 1100°C with a Leco CHN 
1000 analyser. The soil organic carbon (Corg) 
was measured at a temperature of 600°C with 
the Leco-RC 412 analyser.  
Bi-directional reflectance measurements of the 
soil samples were carried out in the laboratory 
with an ASD FieldSpec-II spectroradiometer. 
Spectral readings were taken in 1 nm steps 
between 350 nm and 2500 nm using a 
reflectance standard of known reflectivity 
(Spectralon). The optical head of the 
spectroradiometer was mounted on a tripod in 
nadir position with a distance of 10 cm to the 
sample. For illumination, a 1000 W quartz-
halogen lamp set in a distance of 
approximately 30 cm and with a zenith angle 
of 30° was used. 
Absolute bi-directional reflectance spectra 
were obtained by multiplying the raw 
reflectance spectra by the certified reflectivity 
of the Spectralon panel. Only the spectral 
range from 0.4 to 2.4 µm was used for the 
further study to exclude the noisy parts of the 
spectra. Further on, spectra have been 
resampled to 128 bands using the position, 
band width and filter characteristics of the 
airborne HyMap sensor. Vector-normalization 
after centring each spectrum on its average 
(Otto, 1999) was applied to reduce albedo 
differences between spectra while spectral 
signatures are kept. 
Soil inorganic carbon concentrations (Cinorg) 
were used to investigate varying noise effects 
on reflectance spectra. Estimation of Cinorg 
from reflectance spectra was obtained by 
PLSR („partial-least-square regression“). 
PLSR results were cross-validated according 
to the ‘leave-one-out-method’, which means 
that each sample is estimated by an empirical-
statistical model that was calibrated using the 
remaining (n-1) samples. Coefficient of 
determination (r²), and root mean squared error 
(RMSE) were calculated to assess prediction 
accuracy. 



 

3. SIMULATION 

 
Reflectance spectra have been converted into 
at-sensor radiance for the altitude ‘space’ 
considering different atmospheric conditions 
and sun elevations. Radiometric conditions 
were calculated for the geographic location of 
the city of Trier (49°45’ / 6°38’). Artificial 
normal distributed sensor-specific noise 
against Noise Equivalent ∆ Radiance was 
generated and added to at-sensor radiance. 
This noise considered the following 
wavelength-dependent amount of energy: 
• 400 - 1000nm: 0.010 mWatt/cm²/srµm 
• 1000 - 1900nm: 0.006 mWatt/cm²/srµm 
• 1900 - 2400nm: 0.004 mWatt/cm²/srµm 

The real ‘signal-to-noise’ ratio of the HyMap 
sensor however was disregarded. Resulting 
‘noisy’ radiance spectra have then converted 
back to reflectance spectra at ground 
reassuming identical radiometric condition as 
used upwards. Sensitivity assessment of PLSR 
models against an error term was simplified 
carried out by adding artificial normal 
distributed noise spectra. The error terms were 
generated for different noise levels by using 
the above mentioned values as maximum and 
multiply them by different factors. 
 
 

4. RESULTS AND DISCUSSION 

 
The investigated soil samples vary between 
0.54 g kg-1 Cinorg in the minimum and 
46.27 g kg-1 Cinorg in the maximum with a 
mean of 12.4 Cinorg and a standard deviation of 
11.2 Cinorg. The data were found normal 
distributed at 99 percent level. 
In a first step, a PLSR model for Cinorg 
prediction was developed on original 
laboratory reflections spectra (no radiometric 
manipulation, no noise) at HyMap resolution. 
Estimation of Cinorg with this model using 
seven latent variables resulted in a cross-
validated r² of 0.953 (cross-validated RMSE = 
2.63). The radiometric manipulated and noise 
influenced spectra were used as a test data set 
for this model and compared concerning their 
retrieved prediction accuracy and RMSE. 

Different scenarios were included in the 
simulation to evaluate the varying influencing 
parameters, such as noise levels, atmospheric 
conditions, aerosol variations, sun elevation, 
water vapour concentrations and spectral 
resolution. 
Hazy atmospheric conditions with low sun 
elevation (30th March) and normal atmospheric 
conditions with relatively high sun elevation 
(15th June) were considered to analyse the 
influence of different radiometric conditions. 
Different noise levels (1x noise, 2x noise, 
3x noise, 4x noise, 5x noise, 10x noise) have 
been applied to radiance spectra for these two 
simulated radiometric conditions. While for 
both radiometric conditions adding single 
noise at least a r² higher than 0.8 (RMSE: 5 - 
6 g kg-1 Cinorg) was achieved, the accuracy of 
the PLSR model already substantially 
decreased below 0.7 for doubled noise 
(Tab. 1). Further increase of noise level 
spiralled downward model accuracy. Poorer 
radiometric conditions in relation to good 
conditions produced 40 percent worse RMSE 
in average at the same noise levels. 
 

 
Three different aerosol functions (Tab. 2) were 
used to analyse effects of aerosols’ concen-
tration and size distribution with respect to 
different noise levels. The variation of aerosol 
concentration and size distribution showed no 
noteworthy influence on simulations. The 

30th March 15th June Noise 
level r² RMSE r² RMSE 
1x 0.803   6.22 0.875   4.66 
2x 0.553 12.11 0.687   8.74 
3x 0.384 18.15 0.521 13.03 
4x 0.282 24.22 0.401 17.35 
5x 0.220 30.25 0.319 21.69 
10x 0.102 60.35 0.145 43.39 

Original data (no noise added): r²cv: 0.953; RMSEcv: 2.63. 

Table 1. Influence of noise at different 
radiometric conditions (30th March: hazy 
atmospheric conditions, low sun elevation; 
15th June: normal atmospheric conditions, high 
sun elevation) 



 

model accuracy was only affected by the added 
noise. 
Water vapour concentration in the atmosphere 
was expected to influence model accuracy. 
Therefore, the influence of three different 
water vapour concentrations (1.46 g cm-3; 
2.92 g cm-3; 4.38 g cm-3) on radiance spectra 
were considered while all other parameters 
were left constant. Model accuracy strongly 
decreased with higher water vapour 
concentration (Tab. 3). While a water vapour 
concentration of 1.46 g cm-3 for both radiance 
spectra with single and double noise added 
permitted model accuracy beyond 0.8, this 
could only be achieved for radiance spectra 
with single noise added at higher water vapour 
concentrations. Radiance spectra with single 
noise added even still provided better results 
with a simulated water vapour concentration of 
4.38 g/cm³ than radiance spectra with double 
noise added did with a simulated water vapour 
concentration of 1.46 g/cm³. 
 

 
Four different sun zenith angles (63°, 52°, 43°, 
40°) were considered to the influence of sun 
altitude while all other conditions were left 

constant. Radiance spectra with single noise 
added provided an r² higher than 0.75 with an 
RMSE below 8 g kg-1 Cinorg (Tab. 4). Model 
accuracy for sun elevation higher than 45° 
increased to an r² higher than 0.85 (RMSE < 
5 g kg-1 Cinorg). The radiance spectra with 
double noise added only allowed a model 
accuracy of 0.7 and an RMSE of 9 g kg-1 Cinorg 
at sun zenith angles less than 40°. 
 

 
Hyperspectral data provide much more spectral 
information than often needed. Consequently, 
the relationship between sensor noise and the 
number of spectral bands was finally 
investigated in this simulation study. Four 
different spectral resolutions were simulated 
reducing the original radiance spectra stepwise 
at half of the number of spectral bands and 
further excluding bands within water 
absorption features at 1.4 µm and 1.9 µm 
(Fig. 1). For further analysis spectral bands 
influenced by water vapour absorption were 
excluded, resulting in 121, 60, 30 and 14 
spectral bands included in simulations 
respectively. Results indicated that noise had 
more impact when less spectral bands were 
involved (Fig. 2). As expected, the prediction 
error rose with increasing noise component. 
Similar results were reported by Udelhoven et 
al. (Udelhoven et al., 2001) who compared 
prediction accuracy for simulated data of 
different hyperspectral sensors. 

single noise double noise Ångstrom 
relation r² RMSE r² RMSE 
α = -1.1; 
β = 0.1 

0.910 3.82 0.778 6.76 

α = -1.0; 
β = 0.2 

0.910 3.82 0.775 6.82 

α = -1.3; 
β = 0.05 

0.911 3.79 0.778 6.74 

Original data (no noise added): r²cv: 0.953; RMSEcv: 2.63. 

Table 2. Influence of noise at different aerosol 
functions (9.00 h GMT) 
 

single noise double noise Water vapour 
concentration r² RMSE r² RMSE 
1.46 g cm-3 0.92 3.5 0.81 6.1 
2.92 g cm-3 0.88 4.7 0.69 8.7 
4.38 g cm-3 0.82 6.0 0.57 11.5 

Original data (no noise added): r²cv: 0.953; RMSEcv: 2.63  

Table 3. Influence of noise at different water 
vapour concentrations 

single noise double noise Sun 
zenith 
angle 

r² RMSE r² RMSE 

63° 0.755 7.25 0.486 14.15 
52° 0.838 5.47 0.613 10.51 
43° 0.868 4.81 0.673 9.06 
40° 0.875 4.66 0.687 8.74 

Original data (no noise added): r²cv: 0.953; RMSEcv: 2.63. 

Table 4. Influence of noise at different sun 
zenith angles 



 

Radiance spectra without artificial noise added 
still permitted a model accuracy of 0.8 with 
only 14 spectral bands used while radiance 
spectra manipulated with single noise allowed 
an r² of 0.7 with 30 spectral bands. To achieve 
a model accuracy of 0.7 for radiance spectra 
with double noise added the whole spectral 
information (121 bands) were required. 
Reducing the spectral resolution to 60 spectral 

bands led to a model accuracy of 0.4 and an 
RMSE higher than 13 g kg-1 (Tab. 5). 
An explanation for the rise of the RMSE is 
given by decrease of collinearity degree within 
spectra of considered spectral bands. PLS uses 
redundancy of x-matrix to stabilise prediction 
results against noise influence (Beebe et al. 
1998). This redundancy was highest with 121 
bands due to the relatively closely adjacent 
spectral sampling points while for only 14 
bands it was least. Consequently, adding noise 
to this data reduced collinearity degree in 
particular strong. 
 
 

5. CONCLUSIONS 

 
This simulation study showed that the quality 
of quantitative assessment of soil properties is 
depending on sensor-specific and atmospheric 
parameters. The most important disturbance 
variable was found the Noise Equivalent ∆ 
Radiance of the sensor. A higher NE∆R could 
be compensated to a certain extent by a high 

 

Figure 1. Wavelength position of spectral bands used in simulations on effects of 
different numbers of spectral bands (in grey: bands in water vapour absorptions at 
1.4 µm and 1.9 µm excluded from analysis) 
 

no noise added single noise double noise Number of 
spectral bands r² RMSE r² RMSE r² RMSE 
14 0.810 5.28 0.568 8.83 0.265 15.61 
30 0.944 2.86 0.729 7.19 0.420 12.90 
60 0.955 2.56 0.724 6.91 0.415 13.68 
121 0.953 2.63 0.875 4.66 0.687   8.74 

Original data (no noise added): r²cv: 0.953; RMSEcv: 2.63. 

Table 5. Influence of numbers of spectral bands at different noise levels noise 
 

 

Figure 2. Influence of numbers of spectral 
bands at different noise levels 



 

number of spectral bands. With respect to 
atmospheric influences it has to be considered 
that lower sun elevation decreased prediction 
accuracy and water vapour concentration was 
found to have a strong influence on prediction 
accuracy in general. Consequently, future 
remote sensing sensors should offer a high 
spectral resolution within atmospheric 
windows whereas a higher number of spectral 
bands stabilise prediction results against 
decreasing signal-to-noise. 
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